FOXO Regulates Organ-Specific Phenotypic Plasticity In Drosophila
نویسندگان
چکیده
Phenotypic plasticity, the ability for a single genotype to generate different phenotypes in response to environmental conditions, is biologically ubiquitous, and yet almost nothing is known of the developmental mechanisms that regulate the extent of a plastic response. In particular, it is unclear why some traits or individuals are highly sensitive to an environmental variable while other traits or individuals are less so. Here we elucidate the developmental mechanisms that regulate the expression of a particularly important form of phenotypic plasticity: the effect of developmental nutrition on organ size. In all animals, developmental nutrition is signaled to growing organs via the insulin-signaling pathway. Drosophila organs differ in their size response to developmental nutrition and this reflects differences in organ-specific insulin-sensitivity. We show that this variation in insulin-sensitivity is regulated at the level of the forkhead transcription factor FOXO, a negative growth regulator that is activated when nutrition and insulin signaling are low. Individual organs appear to attenuate growth suppression in response to low nutrition through an organ-specific reduction in FOXO expression, thereby reducing their nutritional plasticity. We show that FOXO expression is necessary to maintain organ-specific differences in nutritional-plasticity and insulin-sensitivity, while organ-autonomous changes in FOXO expression are sufficient to autonomously alter an organ's nutritional-plasticity and insulin-sensitivity. These data identify a gene (FOXO) that modulates a plastic response through variation in its expression. FOXO is recognized as a key player in the response of size, immunity, and longevity to changes in developmental nutrition, stress, and oxygen levels. FOXO may therefore act as a more general regulator of plasticity. These data indicate that the extent of phenotypic plasticity may be modified by changes in the expression of genes involved in signaling environmental information to developmental processes.
منابع مشابه
Foxo Regulates Organ - Specific Phenotypic Plasticity in 1 " Drosophila
10" Phenotypic plasticity, the ability for a single genotype to generate different phenotypes in 11" response to environmental conditions, is biological ubiquitous and yet almost nothing is 12" known of the developmental mechanisms that regulate the extent of a plastic response. In 13" particular, it is unclear why some traits or individuals are highly sensitive to an 14" environmental variable...
متن کاملInsulin Signaling as a Mechanism Underlying Developmental Plasticity: The Role of FOXO in a Nutritional Polyphenism
We investigated whether insulin signaling, known to mediate physiological plasticity in response to changes in nutrition, also facilitates discrete phenotypic responses such as polyphenisms. We test the hypothesis that the gene FOXO--which regulates growth arrest under nutrient stress--mediates a nutritional polyphenism in the horned beetle, Onthophagus nigriventris. Male beetles in the genus O...
متن کاملThe Drosophila Forkhead transcription factor FOXO mediates the reduction in cell number associated with reduced insulin signaling
BACKGROUND Forkhead transcription factors belonging to the FOXO subfamily are negatively regulated by protein kinase B (PKB) in response to signaling by insulin and insulin-like growth factor in Caenorhabditis elegans and mammals. In Drosophila, the insulin-signaling pathway regulates the size of cells, organs, and the entire body in response to nutrient availability, by controlling both cell s...
متن کاملA Toll receptor–FoxO pathway represses Pavarotti/MKLP1 to promote microtubule dynamics in motoneurons
FoxO proteins are evolutionarily conserved regulators of neuronal structure and function, yet the neuron-specific pathways within which they act are poorly understood. To elucidate neuronal FoxO function in Drosophila melanogaster, we first screened for FoxO's upstream regulators and downstream effectors. On the upstream side, we present genetic and molecular pathway analyses indicating that th...
متن کاملMinibrain/Dyrk1a Regulates Food Intake through the Sir2-FOXO-sNPF/NPY Pathway in Drosophila and Mammals
Feeding behavior is one of the most essential activities in animals, which is tightly regulated by neuroendocrine factors. Drosophila melanogaster short neuropeptide F (sNPF) and the mammalian functional homolog neuropeptide Y (NPY) regulate food intake. Understanding the molecular mechanism of sNPF and NPY signaling is critical to elucidate feeding regulation. Here, we found that minibrain (mn...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2011